Semiautomatic robust regression clustering of international trade data
نویسندگان
چکیده
منابع مشابه
Robust Subspace Clustering via Thresholding Ridge Regression
In this material, we provide the theoretical analyses to show that the trivial coefficients always correspond to the codes over errors. Lemmas 1–3 show that our errors-removing strategy will perform well when the lp-norm is enforced over the representation, where p = {1, 2,∞}. Let x 6= 0 be a data point in the union of subspaces SD that is spanned by D = [Dx D−x], where Dx and D−x consist of th...
متن کاملRobust Data Clustering
We address the problem of robust clustering by combining data partitions (forming a clustering ensemble) produced by multiple clusterings. We formulate robust clustering under an information-theoretical framework; mutual information is the underlying concept used in the definition of quantitative measures of agreement or consistency between data partitions. Robustness is assessed by variance of...
متن کاملA fuzzy approach to robust regression clustering
A new robust fuzzy regression clustering method is proposed. We estimate coefficients of a linear regression model in each unknown cluster. Our method aims to achieve robustness by trimming a fixed proportion of observations. Assignments to clusters are fuzzy: observations contribute to estimates in more than one single cluster. We describe general criteria for tuning the method. The proposed m...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Robust regression with imprecise data
We consider the problem of regression analysis with imprecise data. By imprecise data we mean imprecise observations of precise quantities in the form of sets of values. In this paper, we explore a recently introduced likelihood-based approach to regression with such data. The approach is very general, since it covers all kinds of imprecise data (i.e. not only intervals) and it is not restricte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Methods & Applications
سال: 2021
ISSN: 1618-2510,1613-981X
DOI: 10.1007/s10260-021-00569-3